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The Lie group of virtual displacement operators in Rodrigues-Hamilton parameters is constructed and equations of motion are 
derived for a heavy rigid body with one fixed point. It is shown that the addition (subtraction) of a term of the form dr~dr, 
f(t,  x) ~ C 2, to (from) the generalized Lagrangian L*(t, x, ~) does not affect the form of the Poincar~ and Chetayev equations. 
These equations can also be used to describe the relative motion of a holonomic system relative to a moving system of coordinates. 
Hamel's equations in non-linear quasi-coordinates are derived without using the transitivity equations, are compared with the 
generalized Poincar6 equations and are transformed to Chetayev canonical form. © 1998 Elsevier Science Ltd. All rights reserved. 

The equations of Poincar6 [1] and Chetayev [2], based on the application of Lie groups of virtual 
displacement operators in dynamics, and their theory have been extended [3, 4] to closed systems of 
operators. The generalized equations are the general equations of classical mechanics, which include 
all known equations of motion (without factors for constraints) of holonomic and non-holonomic 
mechanical systems, among them also equations in linear quasi-velocities. The form of the equations-- 
the same in independent and in dependent coordinates--depends on the choice of the parameters of 
the actual displacements, whose number equals that of the degrees of freedom. 

In this paper, the equations of motion, in the Poincar6 and Chetayev forms, will be used to describe 
the motion of a rigid body in Rodrigues-Hamilton parameters [5], as well as relative motion relative 
to a moving system of coordinates [6]. Finally, we will present a derivation of the Hamel equations in 
non-linear quasi-velocities and compare them with the generalized Poincar6 and Chetayev equations. 

1. T H E  E Q U A T I O N S  O F  M O T I O N  O F  A R I G I D  B O D Y  I N  
R O D R I G U E S - H A M I L T O N  P A R A M E T E R S  

In some problems of rigid body dynamics and in the theory of gyroscopic systems it is sometimes 
preferable to use Rodrigues-Hamilton parameters [5], which are dependent variables but, unlike the 
Euler angles, have no degeneracies. 

Consider a heavy rigid body with one fixed point O, which we take to be the origin of a fixed system 
of coordinates axes O~rl~, with the O~ axis pointing vertically upward, and a moving system of coordinates 
Oxyz whose axes coincide with the principal axes of inertia of the body about the point O. 

As defining coordinates we take the Rodrigues-Hamilton parameters ~,s (s = 0, 1, 2, 3), which satisfy 
the relation [6] 

~2 + ~,I + Z,~ + Z,2 = I (1.1) 

The projections p, q, r of the instantaneous velocity of the body on the x, y, z axes are expressed in 
terms of ~,s, ;~s as follows: 

P = 2(~.0kl - ~,1~o + ~,3~'2 - ~'2~'3) (pqr, 1 2 3) (1.2) 

(here and below, it is understood that the unwritten relationships are obtained by the cyclic permutation 
indicated in parentheses). 

Equations (1.2) and the relation 

+ + + =0 

imply the equations 
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2~'0 = - (k iP + g2q + k3r) 

2~.1 = ~.oP- ~.3q + ~'2 r (pqr, 1 2 3) (1.3) 

As Poincard parameters of the actual displacements of the body ~s (s = 1, 2, 3) we take the 
quantitiesp_, q and r, respectively. Using the expression for the time derivative of a functionf(t, L0, ~.1, 
~'2, ~3) E C 2 

a f . 3  a_~/. af 3 
=--* 2. =--+ Z n.,x,f 

at i--0 at .,=~ 

we find the intransitive group of actual displacement operators a/at, xs (s = 1, 2, 3), where the virtual 
displacement operators are 

1(~. ~f -~.o a f -~ .~  ~f +~2-~k3) (1 2 3) (1.4) Xl f  =--~ I aZ.o az.i . az,2 

with commutators 

[X~, Xzlf= Xaf (1 2 3) 

and the operator ff/gt commutes with the operators Xs. Consequently, the non-vanishing structure 
constants of the Lie group are 

C32 _ I 2 1 _ 2 = --C23 =C31 = 1 ,  C31 -----C32--Cl3 --1 

The generalized Lagrangian is 

L* (2%, 2L I , ~q, ~,3, P, q, r) = ~ (Ap 2 + Bq 2 + Cr 2) - Mg[2(kl~3 - kok2)Xo + 

+2(Z.oZ. , + Z.2Z.3)y o +(Z.~ + Z,~- L ~ -  ~.~)Zo] (1.5) 

where A, B and C are the principal moments of inertia about O, Mg is the weight of the body, and x0, 
Y0 and z0 are the coordinates of its centre of gravity. 

The Poincar6 equations of motion [1] of a heavy rigid body with one fixed point take the form of the 
dynamical Euler equations 

Ap  - (B  - C ) q r  = Mg[2(kok , + ~,2k3)Z.o - (2L~ + ~ - :L~ - k~)yo] 

Bft - (C-  A)rp = Mg[(~.~ + k~ - ~.~ - ~.~)x o - 2(k,X3 - ~,oX2)Zo] (1.6) 

Ci'- (A - B)pq = 2Mg[(XlX 3 - XoX2)y 0 - (koXl + X2X3)x0] 

whose right-hand sides are expressed in terms of the Rodrigues-Hamilton parameters. 
Equations (1.6) and (1.3) constitute a simultaneous system of seven first-order differential equations 

each with the same number of unknownsp, q, r, )~s (s = 0, 1, 2, 3), the last four of which satisfy relation 
(1.1). These equations are analogous to the classical Euler equations in variablesp, q, r, 0, q~, W and in 
the general case have, besides the integral (1.1), energy and area integrals; if the system is dynamically 
symmetric, that is, A = B9 x0 = Y0 = 0, they have another integral: the constant projection of the 
instantaneous angular velocity onto the axis of dynamic symmetry. 

Compared with Koshlyakov's system (1.7.6) of four second-order equations [5] each system (1.6), 
(1.3) is of one less order. 

We now transform Eqs (1.6) and (1.3) to the form of the Chetayev canonical equations [2]. Introducing 
the variables 

Yl = ~p = Ap, 

and the generalized Hamiltonian 

at." aL" Cr 
= Bq, =-gT= 
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_ 1 / y  I + Y2 
H*(~,o,~I,~,2,~,3,Yi,Y2,Y3)-~t, '- ~ "~-+ + Mg[2(~,l~3 - ~0~,2)Xo + 

+2~0~, + ~2~,)y0 +<~ + ~ -  ~,- ~)~oi 

we obtain the canonical Chetayev equations [2] in the Rodrigues-Hamilton parameters 

( "t 1 I 
y, + ( - i - -6 jy :y3 : M ~ 2 0 . o ~ . ,  + ~ . 3 ) ~ o  - <~.~, + ~,~ - ~4 - ~.~ )Yo] 

(,,) 
Y2 + -'C - -A Y~Y' = Mg[(~,~ + ~3 - ~.] - ~.~)Xo - 2(~.,~..~ - ~.o~.2)Zo] (1.7) 

_ i  

. " ,  c) 
Y~ ~. Y._L + ~ Y3 

2~., = ~ .o -~-  .~ B .~2 T (aBc,  1 2 3) 

Chetayev's theory of integration [2] is applicable to Eqs (1.7). 
Note that Eqs (1.7) have the form of Hamilton equations in the non-canonical variables Ys, )~i [3] 

y,=(y.,.,H°), ~ = ( L i , H ' ) ,  s=1,2,3; i=0 ,1 ,2 ,3  

where the generalized Poisson bracket of two smooth functions f(x, y) and ~(x,y) is defined for a system 
with k degrees of freedom by 

( f ,  lp) = ~, X s f -  X.~.lp ÷ ~, c m 
s=l s.r.m=l sr OYr OYs Ym 

2. THE EQUATIONS OF RELATIVE MOTION 

We will show that the generalized Poincar6 equations for a holonomic mechanical system with k 
degrees of freedom 

d ~L" m- ~L* , 
77 ~'l---~.,. = (c~n,  +co ,~+ i~ l , ,  x , t ; ,  m,,'.~ = l ..... k (2.1) 

(with summation over repeated indices), with generalized Lagrangian of the form 

L*(t,x,rl) = A ( t , x , ~ ) +  d-~-f. , f ( t , x )  ~ C 2 (2.2) 
dt 

are equivalent to the equations 

d 3A =(Crs~," m m. ~ A  X~A,. m , r , s = l  ..... k (2 .3)  

where xi(i = 1 . . . . .  n >I k)  are the defining coordinates of the system. 
Indeed, the term df/dt, which is expressible as 

df/dt = Xof + rhX f f  

on the left of Eq. (2.1) leads to the expression 

dX.~.f l dt = XoXs f  +rlrXrXsf  = XsXof  +c~sXmf ÷ 'qr (XsXr f  + c ~ X , , f )  , r,s = 1 ..... k 

which is just the sum of the terms of the right of Eq. (2.1) that originate from df/dt. 
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Consequently, adding (subtracting) the term df /dt  to (from) the function L*(t, x, 11) does not affect 
the Poincar6 equations, as is the case for the Lagrange equations in independent coordinates qi [7]. 

On the assumption that II OZL*/Oq~q~ II ~ 0 (r, s = 1 . . . .  , k), we apply Legendre transformations 

y , = O L * l ~ ) q  s, s = l  . . . . .  k ,  H ' ( t , x , y ) = y s r l s - L *  (2.4) 

to Eqs (2.1) and 

Ys=OAl~:qs. s = l  . . . . .  k ,  K ( t , x , Y ) =  Y s ~ L - A  (2.5) 

to Eqs (2.3). As a result we obtain the canonical Chetayev equations 

au" .,) au" 
dy.,. = c ~ _ 4 _ _ + C o ~ l Y ,  _ X , H .  ' ~., m , r , s =  l ..... k (2.6) 
dt oy~ " ) " = "~'Y.v ; 

and 

, , I ar . )  ar 
d Y s =  c ~ ' ~ ' + C o , | Y m - X , K ,  r l s =  m , r , s = l  . . . . .  k (2.7) 
dt  ~ oy  r " j " ~ ; 

which are equivalent to Eqs (2.1) and (2.3), respectively. ~k ing  (2.4) and (2.5) into account, we conclude 
that 

Ys = Y,,.+ Xsf, H*(t,x,y)=r(t,x,Y)-Xof 

and using these equalities we find relations 

all"  a r  ay, + x o x , f  
ar,  = ' s =  l .. . . .  k; a t = a t  

from which it follows that Eqs (2.6) and (2.7) are equivalent. In relation to the last equality, we observe 
that in the canonical equations the variables xi and Ys (i = 1 . . . . .  n; s = 1 , . . . ,  k) are considered 
independent. 

An example of a function of the form (2.2) is the Lagrangian 

L'(t,  x, 11) = T*(t, x, 11) + U(t, x) 

for the problem of relative motion of the system in a moving system of coordinates whose motion is known, where 
the defining coordinates xi define the position of the system relative to the moving axes. 

The motion of  the moving system of coordinates Oxyz  is characterized by two vectors: the absolute 
velocity v0(t) of the origin O and the absolute instantaneous angular velocity o( t )  of rotation about O. 
The kinetic energy of absolute motion of the system [6] is 

Ta = Tr +W'Gr + m" e*'t°l 2 + MVo "(re +mxrc)+Mu~ 12 (2.8) 

where Tr = mvrZv/2 and Gr = rv × mvrv (v = 1 , . . . ,  N) are the kinetic energy and the relative angular 
momentum, rv = r~(xl . . . .  , x,) is a radius vector with origin at O, i ,  is the relative velocity of  a point 
mass my, M = Y-v my is the mass, r~ is the radius vector of  the centre of mass and 0 ° is the inertia tensor 
of the system about O. The time derivatives ~ ,  i c are evaluated in the Oxyz system of coordinates. 

By virtue of the identity [7] 

v 0 .(i- c + m× re)--- d(r  c . v o ) l d t - r  ~ . w  o 

where w0 is the absolute acceleration vector of the point O, we can rewrite (2.8) as follows: 

T o = T,. + m . G  v + m - 0 ° . m l 2  - Mrc "w0 +dr/dr, f ( t , x )  --- Mr c .v o (2.9) 

omitting the term M~/2 ,  which does not affect the equations of motion. Thus, the generalized Lagrang- 
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ian for the relative motion has the form of (2.2) with 

A(t,x, 1]) = Tr(x,  l])+ t o ( t ) . G r ( x ,  r l )+ U* ( t , x )  

U* ( t, x )  = U(t ,  x ) +  to( t ) .  0 ° ( x ) .  t o ( t ) 1 2  - M r  c (x) .w o (t) 
(2.10) 

where U(t,  x )  is the force function of the active forces driving the system. 
Consequently, in view of (2.10), the equations of relative motion of a holonomic system may be 

expressed either in the Poincar6 form (2.1) or (2.3), or in the Chetayev form (2.6) or (2.7), which are 
equivalent. The results of [8] are special cases of this statement. 

3. THE EQUATIONS OF MOTION IN N O N - L I N E A R  
Q U A S I - C O O R D I N A T E S  

It was shown in [3] that the Boltzmann-Hamel equations in linear quasi-coordinates arc a special 
case of the generalized Poincar6 equations, constructed using a closed system of infinitesimal virtual 
displacement operators; the canonical Chetayev form of equations in quasi-coordinates was also given. 

Equations in non-linear quasi-coordinates were first derived by Hamel [9] from the central Lag, range 
equation, using transitivity equations. We will now derive those equations directly from the Lagrange 
or Maggi equations without using the transitivity equations, as in the derivation of the Poincar6 equations 
in [4]; we will also compare the derived equations with the latter and convert them to canonical form. 

We will first consider a holonomic system with Lagrange coordinates qi (i = 1 . . . .  , n )  and arbitrary, 
generally non-linear, functions which are independent with respect to t~j 

13 i - f , . ( t ,q,  il), i = 1 . . . .  n (3.1) 

such that det (Ofi/Oilj) ~ 0 ( i , j  = 1 , . . . ,  n) ,  Solving (3.1), we obtain the expressions 

ili - Fi(t,q,1]), i = ! . . . . .  n (3.2) 

substitution of which into (3.1) yields identities, where (~Ssr is the Kronecker delta) 

f s i F i r  ~- f i r F s i  : a s r  (3.3) 
Li=-bf . , . lOih ,  F i r - a F i l O r  L ,  i , j , r , s = l  . . . . .  n 

Following Hamel, we put ~s = rls, where rCs are non-linear quasi-coordinates and rls are quasi-velocities, 
or, following Poincar6, parameters of actual displacements; we define "partial derivatives with respect 
to the quasi-coordinates", and the inverse expressions and variations by 

m m ~  
~ = F~., Oqi Oqi f~i br L (3.4) 

~qi = FisSg.,., 8~s = f s f iq i ,  i , s  = 1 . . . . .  n (3.5) 

Multiplying the Lagrange equations by F~ and summing over all i, we obtain the Maggi equations 

d /}L 0L)  
dt3~li  ~ Fis=Q'~" Qs=QiFi s ;  i , s = l  ..... n (3.6) 

Replacing the velocities qi in the function L(t ,  q, il) by their expressions (3.2), we obtain the generalized 
Lagrangian L *(t, q, 11). Since 

_ a:, _. + 

d ' L  d ( 3 L ' ) 3 / ,  . ' l :  d ~/,  
= ~ ~ - -  -r ~ ; i, r = l, ..., n 

dt  ~ii i dt  Orlr ~ili Orlr dt  ~ili 
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it follows that Eqs (3.6), taking (3.3) and (3.4) into account, become the equations of motion of a 
holonomic system in non-linear quasi-coordinates 

d Off OL*( d Of, Of, ) Off =Q~; r , s , i=l  ..... n (3.7) 

Using the equalities 

(3.8) 

which follow from the transitivity equations, Hamel [9] transformed Eqs (3.7) to a second form 

d ~ ~'~ ~C d 3L* OL" '~  ~ f i , - - - = Q ; ;  r , s , i= l  ..... n (3.9) 
dt ~rq, OTli ~, ~ s  

Let us consider the variation of a function (p(t, q) e C 2 over virtual displacements of system (3.5) 

= ~ F , , s T t ,  = rm., = x , ~ t ,  

a q i  3 q i  " , 

from which we obtain expressions for the virtual displacement operators 

X - ~ =Fi, ~¢p, s = l  ..... n 
,9  = ~ Oq i 

with commutator 

(3.10) 

[ X , X , ] o ~ X , X : p - X , X , ~ =  " • crsX=qL ra, r , s= l ..... n 

where the structure coefficients 

generally depend not only on t and qi but also on rls on which the operators (3.1) themselves also depend. 
Thus, the system of operators (3.10) is a closed system, like the operators (1.10) of [4] in the generalized 
Poincar6 equations. 

Introducing the notation [10] 

r' - dt OF~ ~ ,  W" =- F,, ( d O/r O/, ) " " ( d t ~ q i  Oq, ; i , r , s = l  ..... n (3.11) 

for the Chaplygin and Voronets-Hamel coefficients, respectively, and taking (3.10) into account, we 
can write Eqs (3.7) and (3.9) in the more compact form 

d 0L" 
at 3qs + w f - x , C  =aS; i , r , s = l  ..... n (3.12) 

and 

d 0L" 0E 
f i , ~ ' - X , C = Q ~ ;  i , r , s = l  ..... n (3.13) 

dt Orris ~ i  

analogous to the form of the Poincar6 equations. 
In the notation (3.11), Hamel's transitivity equations (13) and (13a) [9] take the following form 

[10] 
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d&t., 
8q., = W/'&tt, =-/)rl" T ; S x , ; -  ~ i , r , s = l  ... . .  n (3.14) 

dt ~4i 

analogous to that of the Poincar6 equations (1.11) of [4], which link the parameters of the virtual and 
actual displacements. 

It follows from the foregoing that, at least formally, the equations of motion in non-linear quasi- 
coordinates are analogous to the generalized Poincar6 equations. 

We will now reduce Eqs (3.12) and (3.13) to Chetayev canonical form. Assuming that II o2Z*/Orb, &Is I1 * 0 
we replace the variables rls and the function L*(t, q, 11) by new variablesys and a function H*(t, q, y) via 
the equalities 

aL* 
ys = - ~ .  , H*( t ,q ,y )= ysrls - L*(t,q, rl) (3.15) 

from which we obtain the following relations [2] 

11., =~_ , X,H* = - X , E ,  s = l  ... . .  n (3.16) 
oy,,. 

Substituting (3.15) and (3.16) into Eqs (3.12) and (3.13) we convert the latter to the form of the 
canonical Chetayev equations 

~H* 
dyS + yrW: + X'H* . . rls=--~-7; i , r , s = l  ... . .  n (3.17) 

dy,,. , ~H*. 
dt - Y J : f ~ r  + X " H ' = Q J '  11s='-~-y, i , r , s = l  ... . .  n (3.18) 

in the variables qi and Ys. 
In conclusion, let us consider a non-holonomic system with k degrees of freedom subject to non- 

integrable constraints of the form 

r l j - f j ( t , q , q ) = 0 ,  j = k + l  ..... n (3.19) 

We add to (3.19) arbitrary independent relations 

rl., =-f,(t ,q,  it), s = l  ..... k (3.20) 

such that det (03~,./04j) ~ 0 (i, j" = 1 , . . . ,  n). The virtual displacements of the system are defined by 
Chetayev's conditions 

~fJ 8ql =0, i=I ..... n; j=k+l ..... n (3.21) 

Noting that under the constraints (3.19) 8nj = 0 (j --- k + 1 . . . . .  n), we find that the virtual displacements, 
as before, satisfy equalities (3.5), but with s = 1 . . . .  , k. The Maggi equations (3.6) for a non-holonomic 
system, s = 1 . . . . .  k, as in the previous section of this paper, may be transformed to the form of (3.12) 
or (3.13), (3.17) or (3.18), where s = 1 . . . .  , k; these are the equations of motion of the non-holonomic 
system in non-linear quasi-coordinates, which are identical with Hamel's equations (I) and (II) [9]. These 
equations must be complemented with the constraint equations (3.19). The transitivity equations (3.14) 
retain their form, if allowance is made for the fact that 8xr = 0 for r = k + 1 . . . . .  n. 

Note that Eqs (3.7) and (3.9), as well as Eqs (3.17) and (3.18), in the case of linear quasi-coordinates, 
take the form of generalized Poincar6 and Chetayev equations [4] (as to the Poincar6 equations see 
[11]). 
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